« 上一篇下一篇 »

强大的异步架构量化平台(alphahunter)

alphahunter是一个基于Python原生异步库(asyncio)实现的异步事件驱动开源量化策略研究/策略回测/量化交易/高频做市平台,本系统实现数据采集,存储,推送,研究,仿真模拟,线上模拟,实盘等全流程量化研究交易支持,各步骤规则,配置,接口高度统一,异步框架提高系统综合性能。

中低频基础框架如下图所示:

高频基础框架如下图所示: 

策略研究回测基础框架如下图所示:

alphahunter量化全流程如下:

1.数据清洗与存储. 描述:第三方数据,经过清洗,预处理,依据标准格式存储到数据库。 数据种类分为: 行情数据,另类数据。 当前的行情数据包括: 订单簿数据,成交数据,K线数据。 另类数据包括: 地址转账数据,新闻数据,微博数据,论坛数据。

2.数据矩阵生成. 描述: 使用DataMatrix框架和系统自带DataMatrixAPI,实现自定义DataMatrix编写。数据矩阵生成内容包括研究人员所需预测变量时间序列,根据数据库标准存储,根据不同模型参数遍历数据库迭代生成的行情指标时间序列,另类事件拟合指标时间序列等预测数据。最后以csv文件输出数据矩阵执行结果。

3.信号研究. 描述: 研究人员把数据矩阵生成csv导入自己的研究环境(比如Jupyter Notebook),根据预先产生的初级信号,根据其分布特性,组合特性,使用不同的统计方法,实现对待预测时间序列变量的迭代预测。此过程涉及到数据的再清洗,方法选择,模型选择,信号组合等过程。最终根据数据矩阵的可使用变量按照某种方式生成合成变量,对待预测变量有统计显著的预测效果。

4.策略实现. 描述: 根据信号研究过程产生的合成信号,实现策略实施,将合成信号转变为可交易的策略内容。表现形式涉及但不限于: 统计套利,CTA,多因子等不同类型策略。

5.策略仿真模拟. 描述: 启动仿真模拟(策略回测)平台,针对上一步骤实施的策略实现tick级别或者K线级别仿真模拟,利用数据库历史行情数据,策略模拟过程中,配置策略使用的不同参数配置,最终根据收益率,波动率,夏普率,回撤,换手率等多重指标,评定策略在不同参数配置下的不同表现,选取超参数平面上策略表现稳定区域,确定最终模型。

6.策略线上模拟。 描述: 将第5步骤完成的策略部署到线上,启动线上模拟平台实现实盘模拟,通过配置策略所需数据等系统支持运行环境,实现订单线上模拟撮合引擎成交,并监控策略线上模拟表现情况。线上环境数据支持依据策略实际情况,包括但不限于实施tick数据,订单薄数据,成交数据,K线数据,或者另类数据实时推送等需求。

7.策略实盘. 描述: 将第5步骤完成的策略部署到线上,实现实盘交易。同6,线上环境数据支持依据策略实际情况,包括但不限于实施tick数据,订单薄数据,成交数据,K线数据,或者另类数据实时推送等需求。

8.策略线上模拟和实盘交易表现监控与预警。 描述: 策略线上模拟和实盘过程中,需要对应表现监控与极端情况预警支持,具体表现形式根据策略类型不同而单独配置。

当用户想要进行信号研究的时候可以编写DataMatrix代码通过量化框架接入到底层DataMatrix处理器(类似虚拟交易所)。

当用户写好策略想要进行策略回测的时候,可以将编写好的策略代码通过量化框架接入到底层backtest虚拟交易所(内部实现了回测功能)。

当用户写好策略想要进行线上模拟的时候,可以将编写好的策略代码通过量化框架接入到底层simulation虚拟交易所(内部实现了线上模拟的功能)。

当用户写好策略想要进行实盘的时候,可以将编写好的策略代码通过量化框架接入到底层真实的交易所(比如火币,OKEX等)。

如下图所示:

项目地址:https://github.com/phonegapX/alphahunter